

CRMF Overview

Industry day

Martina Martinello | Project Director

January 30, 2025

Outline

- Mission of CRMF
- Project scope & facility workflow
- Schedule
- Success Factors

Outline

- Mission of CRMF
- Project scope & facility workflow
- Schedule
- Success Factors

Linear Accelerator complex at SLAC

LCLS-II-HE

LCLS-II

LCLS Cu-inac

Linear Accelerator complex at SLAC

Superconducting Cryomodules are the building blocks of the LCLS-SC-LINAC View of superconducting cryomodules in the LCLS-II tunnel

SX

Linear Accelerator complex at SLAC

Superconducting Cryomodules are the building blocks of the LCLS-SC-LINAC View of superconducting cryomodules in the LCLS-II tunnel

A CONTRACTOR OF THE OWNER OWNER

SX

53 P14

Mission of CRMF

CRMF: Cryomodule Repair and Maintenance Facility

- ~ 2-3 CMs/year expected to need to be repaired based on current data
- CRMF is needed to repair, test and maintain superconducting cryomodules at SLAC

CRMF needed at SLAC to ensure the performances of cryomodules are preserved over the lifetime of the accelerator

Outline

- Mission of CRMF
- Project scope
- Schedule
- Success Factors

Project Scope: New 21,000 GSF Building at SLAC

TEL

LCLS-II Cryoplant

WHITE WHITE

N Access Rd

Aerial Rendering from

Isometric view of the facility (90% Detailed design)

Project Scope: Buildouts for CM Repair and Testing

Optimized layout for complete set of SRF facilities for X-FELs under one roof

Project Scope: Buildouts for CM Repair and Testing

Conventional Building and Site Infrastructure Construction Project

• 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls

- 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls
- Overhead bridge cranes: 20-ton in main repair area and 3ton in cryogenic equipment area

- 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls
- Overhead bridge cranes: 20-ton in main repair area and 3ton in cryogenic equipment area
- Concrete shielded enclosure for cryomodule testing, with 4 ft. thick poured-in-place concrete walls, 3ft thick concrete removeable roof blocks, and penetrations for a cryogenic feed line and waveguides

- 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls
- Overhead bridge cranes: 20-ton in main repair area and 3ton in cryogenic equipment area
- Concrete shielded enclosure for cryomodule testing, with 4 ft. thick poured-in-place concrete walls, 3ft thick concrete removeable roof blocks, and penetrations for a cryogenic feed line and waveguides
- Two 16' deep, 60" diameter shafts will be pre-cast adjacent to the shielded enclosure

- 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls
- Overhead bridge cranes: 20-ton in main repair area and 3ton in cryogenic equipment area
- Concrete shielded enclosure for cryomodule testing, with 4 ft. thick poured-in-place concrete walls, 3ft thick concrete removeable roof blocks, and penetrations for a cryogenic feed line and waveguides
- Two 16' deep, 60" diameter shafts will be pre-cast adjacent to the shielded enclosure
- Equipment platform, above the control room, supports key electrical and mechanical equipment

- 21,000 SF building divided in main cryomodule repair area and cryogenic equipment area through isolation walls
- Overhead bridge cranes: 20-ton in main repair area and 3ton in cryogenic equipment area
- Concrete shielded enclosure for cryomodule testing, with 4 ft. thick poured-in-place concrete walls, 3ft thick concrete removeable roof blocks, and penetrations for a cryogenic feed line and waveguides
- Two 16' deep, 60" diameter shafts will be pre-cast adjacent to the shielded enclosure
- Equipment platform, above the control room, supports key electrical and mechanical equipment
- Control room area, meeting/break room and restrooms

Conventional Building and Site Infrastructure Construction Project

 Outdoor concrete pad areas to accommodate cryogenic system Helium storage tanks and other cryogenic equipment

- Outdoor concrete pad areas to accommodate cryogenic system Helium storage tanks and other cryogenic equipment
- Exterior Central Utility Plant (CUP)

- Outdoor concrete pad areas to accommodate cryogenic system Helium storage tanks and other cryogenic equipment
- Exterior Central Utility Plant (CUP)
- Exterior improvements (asphalt, parking, etc)

Outline

- Mission of CRMF
- Project scope
- Schedule
- Success Factors

Timeline Overview

Activity Name	Finish Date	
DRAFT RFP	8-Nov-24	
Vendor Outreach Day	30-Jan-25	
A/E Detailed Design Completed	Apr-25	
RFP Documents Prep and Approval	Jun-25	
Release RFP	Jun-25	
General Contractor Proposal Effort	Aug-25	
Director's Review - CD-2/3	Aug-25	Project's reviews needed for
IPR Review - CD-2/3	Sep-25	construction approval
Award Documents Prep and Approval	Nov-25	
AWARD	Nov-25	

Outline

- Mission of CRMF
- Project scope
- Schedule
- Success Factors

Success Factors

- Safety
 - Safety is the priority at SLAC only safe work is acceptable
 - Safety considerations must be part of work planning and schedule development
 - Safety cannot be compromised to meet schedule
- Schedule
 - Complete construction activities as per the performance period defined in the RFP, in the most expedience manner and in compliance with SLAC safety requirements
 - Schedule should be realistic and take into account safety considerations
- Teamwork
 - Construction activities should minimize impact to on-going SLAC operations and other construction projects
 - Honest and transparent communication among team members
 - Achieving success together!

Thank you

