

Outline

- Overview of Scopes
- Virtual Tour
- Key Considerations
 - Government Furnished Equipment
 - Schedule Constraints and Outage Plan
 - Temporary Power
 - Preliminary Design Report and Specifications
 - As-built documents

Overview of Scopes

Overview of SP1 Design-Build Subcontract Scopes

Need for Integrated Design & Construction

- Scopes 1, 2 and 3 are interconnected and have numerous physical interfaces with existing electrical systems
- Existing electrical system must remain energized as much as possible to reduce adverse impacts to other laboratory activities
- Constructability at each physical interface between new and existing electrical components must be considered in the final design of each scope item
- The design must also incorporate realistic construction durations to minimize power outage durations

Scope	Туре	
Scope 1: Master Substation Improvements		
Scope 1-1: Master Substation Expansion	Base	
Scope 1-2: Transformer T-1	Base	
Scope 1-3: Transformer T-2	Additive 1	
Scope 1-4: Trigger Current Limiters	Additive 2	
Scope 2: LINAC Power Distribution System Improvements		
Scope 2-1: Cable Trays and CUIR1-4 Feeders	Base	
Scope 2-2: CUIR3 and CUIR4 Final Load Connections	Additive 3	
Scope 2-3: CUIR5-8 Feeders	Additive 4	
Scope 2-4: CUIR5-8 Final Load Connections	Additive 5	
Scope 3: Sector 4 Switchgear Installation*	Base	

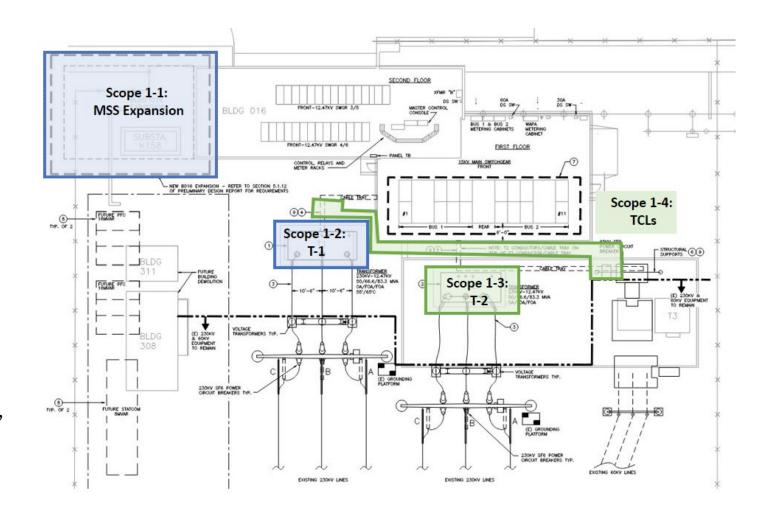
Subproject 1 DB Subcontract - Scope 1

Scope 1: Master Substation Improvements

- 2 Base Scopes
- 2 Additive Scopes

Scope	Туре	
Scope 1: Master Substation Improvements		
Scope 1-1: Master Substation Expansion	Base	
Scope 1-2: Transformer T-1	Base	
Scope 1-3: Transformer T-2	Additive 1	
Scope 1-4: Trigger Current Limiters	Additive 2	
Scope 2: LINAC Power Distribution System Improvements		
Scope 2-1: Cable Trays and CUIR1-4 Feeders	Base	
Scope 2-2: CUIR3 and CUIR4 Final Load Connections	Additive 3	
Scope 2-3: CUIR5-8 Feeders	Additive 4	
Scope 2-4: CUIR5-8 Final Load Connections	Additive 5	
Scope 3: Sector 4 Switchgear Installation*	Base	

Scope 1: Master Substation Improvements



Additive Scopes

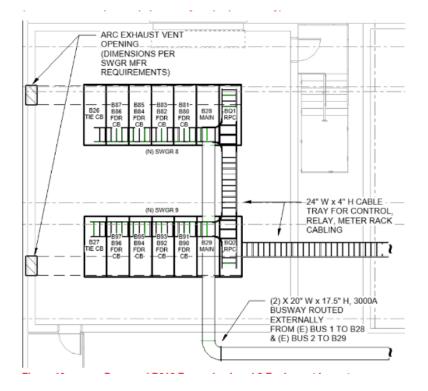
BASE

Scope

- Scope 1-1 (BASE) Expansion of the Master Substation Expansion Building (B016), installation of the new MV switchgear, and all associated enabling works, including relocation of an existing generator and replacement of low voltage transformer
- Scope 1-2 (BASE) Replacement of Transformer T-1
- Scope 1-3 (ADDITIVE) Replacement of Transformer T-2
- Scope 1-4 (ADDITIVE) Addition of Triggered Current Limiters (TCL) for T-1, T-2 and T-3

Scope 1-1 – Master Substation Expansion – Structural Works (BASE SCOPE)

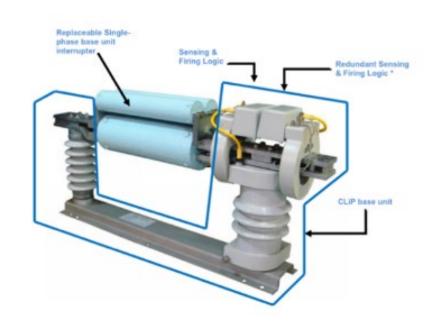
- 1. Construction material to be same as existing:
 - Concrete Masonry Unit (CMU) walls,
 - Cast-in-place concrete slab on grade,
 - Cast-in-place concrete metal deck (2nd floor),
 - Insulating concrete on metal roof deck
- 2. Expansion footprint: Approx. 1500-1800 sq. ft.
- 3. Direct Access to level 1 and level 2
- 4. Direct Access between levels
- Direct Access from existing and proposed through interior



Scope 1-1 - Master Substation Expansion - Electrical Installations (BASE SCOPE)

- Disconnect and dispose existing substation K15B, installation of new substation B016S (GFP)
- Relocation of existing outdoor diesel generator and ATS into new MSS expansion
- Specify, design, permit, furnish and install outdoor 12.47kV busway between Bus 1 & 2 and Bus 8 & 9

Scope 1-2 - Replacement of Transformer T-1 (BASE SCOPE)


Scope 1-3 - Replacement of Transformer T-2 (ADDITIVE SCOPE)

- Demolish existing transformer and related materials
- Install new HV Transformer (GFP)
- 230kV Connection

Scope 1-4 - Triggered Current Limiters (TCL) (ADDITIVE SCOPE)

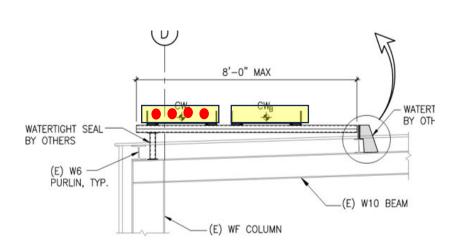
- Design, furnish and install 3 three-phased 15kV TCL outdoors
- Provide measures to reduce available fault energy curing moments in time during transfer procedures where transformers are paralleled under various bus transfer conditions for T-1, T-2 and T-3

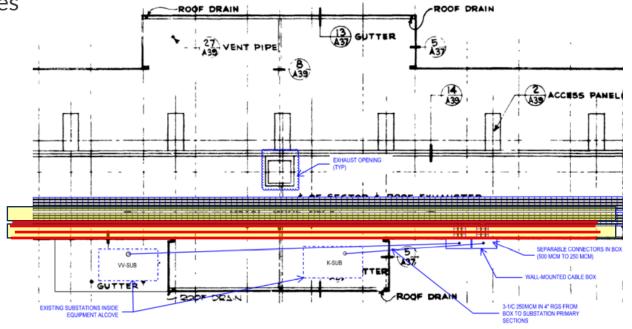
Subproject 1 DB Subcontract – Scope 2

Scope 2: Linac Power Distribution System Improvements

- 1 Base Scope
- 3 Additive Scopes

Scope	Туре	
Scope 1: Master Substation Improvements		
Scope 1-1: Master Substation Expansion	Base	
Scope 1-2: Transformer T-1	Base	
Scope 1-3: Transformer T-2	Additive 1	
Scope 1-4: Trigger Current Limiters	Additive 2	
Scope 2: LINAC Power Distribution System Improvements		
Scope 2-1: Cable Trays and CUIR1-4 Feeders	Base	
Scope 2-2: CUIR3 and CUIR4 Final Load Connections	Additive 3	
Scope 2-3: CUIR5-8 Feeders	Additive 4	
Scope 2-4: CUIR5-8 Final Load Connections	Additive 5	
Scope 3: Sector 4 Switchgear Installation*	Base	

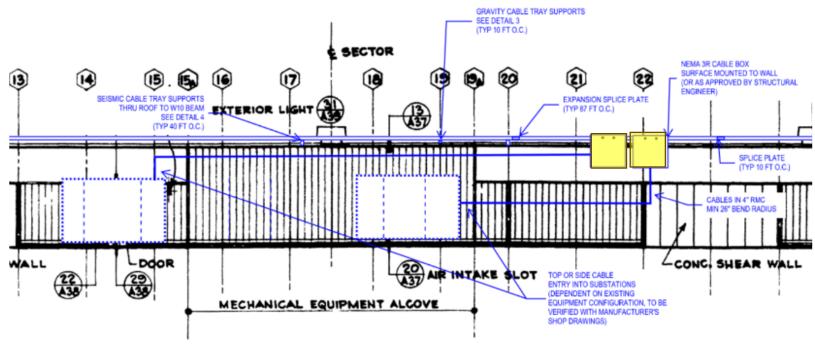




- 1. Scope 2-1 (BASE)
 - Design of FULL cable tray and 12.47kV voltage feeder cables connection system on roof of Gallery
 - Install two cable trays to support CUIR1 to CUIR8 feeders
 - Install CUIR1 and CUIR2 feeders with connections to the MSS and Substation 905
 - Install CUIR3 and CUIR4 with connections from the MSS to cable boxes with provisions for connection to individual substations
- 2. Scope 2-2 (ADDITIVE) Connecting CUIR3 and CUIR4 feeders from cable boxes to individual substations, including any work needed to renovate and upgrade the substations to enable the connection
- 3. Scope 2-3 (ADDITIVE) Installation of CUIR5 to CUIR8 feeders with connections from the MSS to cable boxes with provisions for connection to individual substations
- 4. Scope 2-4 (ADDITIVE) Connecting CUIR5 to CUIR8 feeders from cable boxes to individual substations, including any work needed to renovate and upgrade the substations to enable the connection

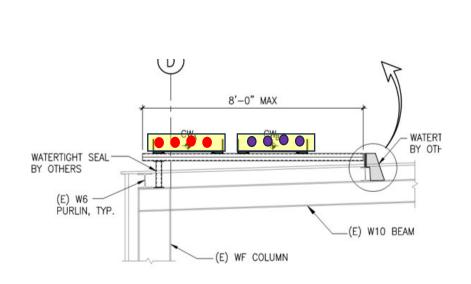
Scope 2-1 (BASE SCOPE)

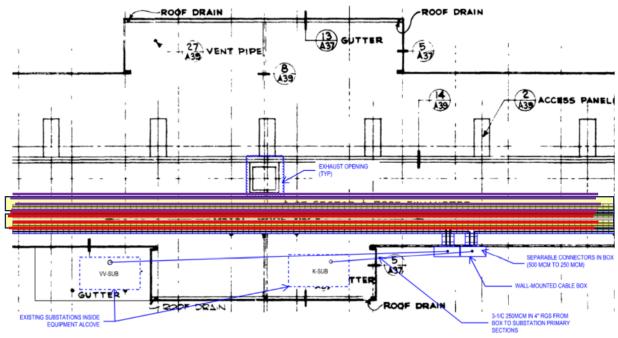
- Design FULL cable trays and feeder connection system for CUIR1 to CUIR8
- Install two cable trays at roof of existing Klystron Building
- Install feeders CUIR1 to CUIR4
- Connection of CUIR1 and CUIR2 to final substation
- Connection of CUIR 3 and CUIR4 to cable boxes



Scope 2-2 (ADDITIVE SCOPE)

Connection of CUIR3 and CUIR4 from cable boxes to final substation.


Conceptual Typical CUIR Cable Tray Connection Elevation (Proposed Work Indicated in Blue)


Scope 2-3 (ADDITIVE SCOPE)

Installation of feeders CUIR5 - CUIR8 to cable boxes

Scope 2-4 (ADDITIVE SCOPE)

Connection of feeders CUIR5 - CUIR8 to final substations

Subproject 1 DB Subcontract – Scope 3

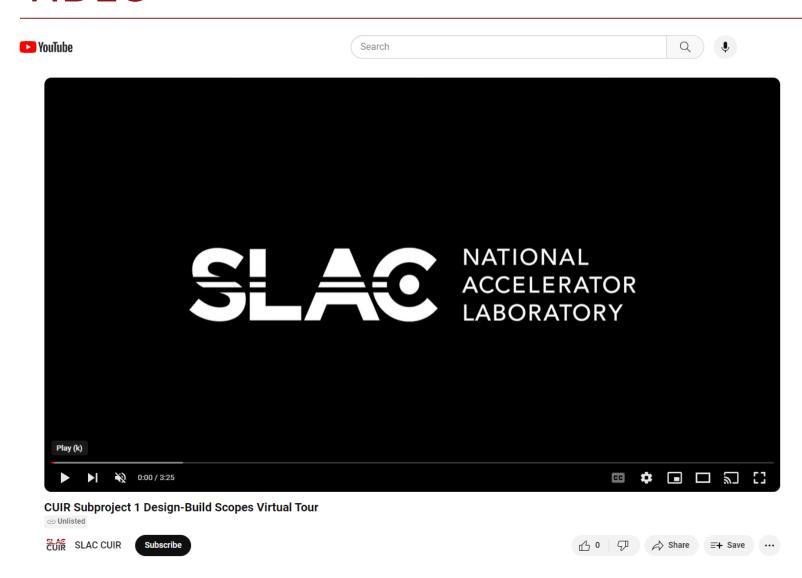
Scope 3: Sector 4 Switchgear Installation

- 1 Base Scope
- No additive scope

Scope	Туре	
Scope 1: Master Substation Improvements		
Scope 1-1: Master Substation Expansion	Base	
Scope 1-2: Transformer T-1	Base	
Scope 1-3: Transformer T-2	Additive 1	
Scope 1-4: Trigger Current Limiters	Additive 2	
Scope 2: LINAC Power Distribution System Improvements		
Scope 2-1: Cable Trays and CUIR1-4 Feeders	Base	
Scope 2-2: CUIR3 and CUIR4 Final Load Connections	Additive 3	
Scope 2-3: CUIR5-8 Feeders	Additive 4	
Scope 2-4: CUIR5-8 Final Load Connections	Additive 5	
Scope 3: Sector 4 Switchgear Installation*	Base	

Scope 3 – Sector 4 Switchgear Installation

New 15kV outdoor pad-mounted switchgear (GFP) to be installed on the south side of the Klystron Gallery and connected to existing circuits VV1, VV2, and VV4



Virtual Tour

VIDEO

Link to Video

Key Considerations

Key Considerations

- 1. Government Furnished Property
- 2. Schedule Constraints, Power Outages and Construction Activities Coordination
- 3. Temporary Power
- 4. Preliminary Design Report and Specifications
- 5. As-Build Documents
- 6. Other construction projects concurrent at SLAC

Key Considerations

To be presented by other speakers:

- 1. SLAC Safety and Work Planning Control
- 2. Electrical Hazards and LOTO Procedures
- 3. Environmental Safety Risks
 - Radiologically Controlled Areas
 - Lead Paint & Asbestos
 - Air Quality

Government Furnished Equipment

Government Furnished Property (GFP)

The following equipment are procured as GFP to be installed by the DB subcontractor:

Scope 1:

- Medium Voltage Switchgear
- High Voltage Substation Transformers

Scope 2:

12kV Medium Voltage Cables

Scope 3:

Sector 4 Switchgear

230kV MSS Transformer

500 MCM 12kV cables

Switchgear

Government Furnished Property (GFP)

Schedule

The current CUIR schedule expectation is that most GFP will arrive at SLAC:

Between calendar years 2024 and 2028

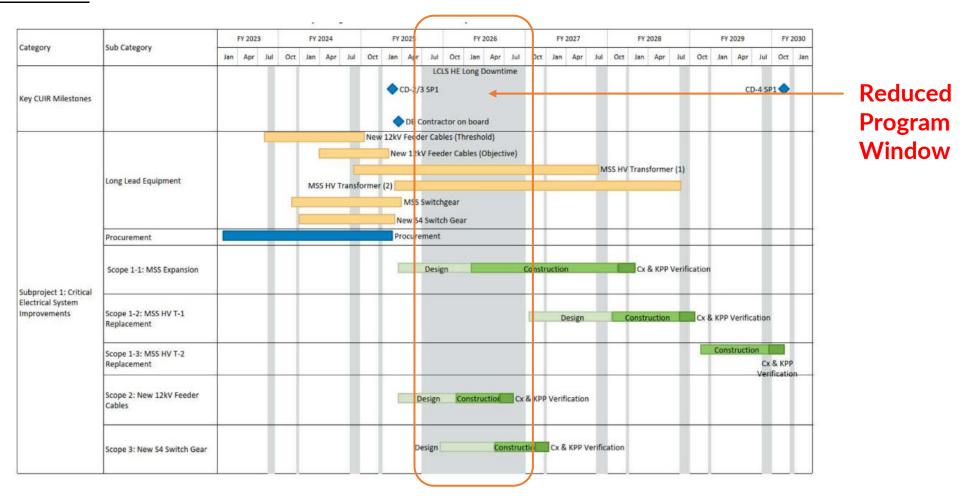
Temporary storage durations are currently planned:

Range from 3 to 12 months and will be refined after equipment are approved for manufacturing and receiving Subproject 1 preliminary construction schedule

Government Furnished Property (GFP)

	Responsible Party	
	SLAC	D-B Subcontractor
Acceptance of equipment at time of delivery and temporary storage placement	X	
Performing indoor/outdoor space inspections or SLA's	X	
Storage location preparation and acceptance	X	*
Acceptance of equipment prior to final installation		X
Transporting any equipment elsewhere on site after delivery acceptance		X

^{*} If subcontractor's schedule requires the HV Transformer to be stored for more than 6 months, the subcontractor will carry additional responsibilities for storage site preparation prior to delivery such as providing secondary oil containment to meet requirements.



Schedule Constraints and Outage Plan

Summary Schedule of SP1 LLE Delivery schedule and contractor's anticipated work plan

The overall project schedule reflects preliminary planning-level forecasts available to the project team as of November 2023.

Design and Construction Subcontract for Awarded Scopes

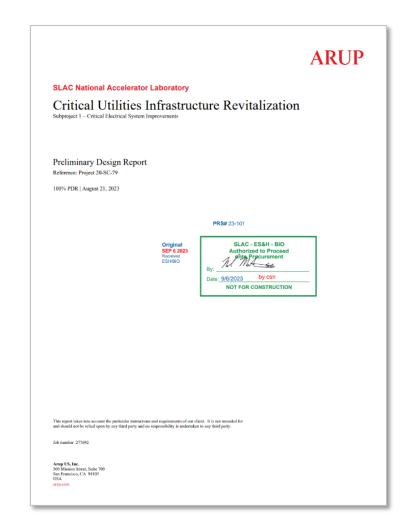
Award SP1 Design Build Subcontract (after receiving DOE approval)	March 2025	
Start Design-Build Subcontract	Upon Execution of Award	
Complete Design on Scopes 2 and 3 (receive BIO approval on 100% submittal)	November 2025	
Complete Scope 1 Design (receive BIO approval on 100% submittal)	February 2026	
Complete Construction Scope 2	June 2026	
Commission and Transition to Operations Scopes 2	August 2026	
Complete Construction Scope 3	October 2026	
Commission and Transition to Operations Scopes 3	November 2026	
Complete Construction Scope 1	Spring/Summer 2030	
Commission and Transition to Operations	Spring/Summer 2030	
Close out Subproject 1 Design Build Subcontract	Summer 2030	

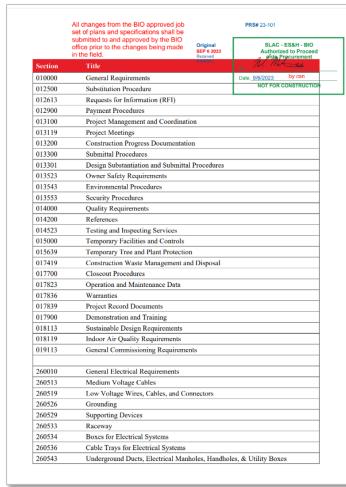
BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Temporary Power

Temporary Power

- Each scope has varying temporary power requirements as documented in the <u>Subproject 1</u>
 Outage Plan. Any temporary generator power sustaining operational loads will need to
 demonstrate a high level of reliability and operate on a 24/7 schedule with a SPARE of
 each site ready for replacement on site
- Generators provided by subcontractor, installation by SLAC
- The Design-Build Subcontractor shall submit a Temporary Power Plan for each discrete scope of work
- Some scopes may require additional outages and temporary power outside the Subproject
 1 Outage Plan as the subcontractor's schedule is coordinated in detail with various science programs and stakeholders


Preliminary Design Report and Specifications

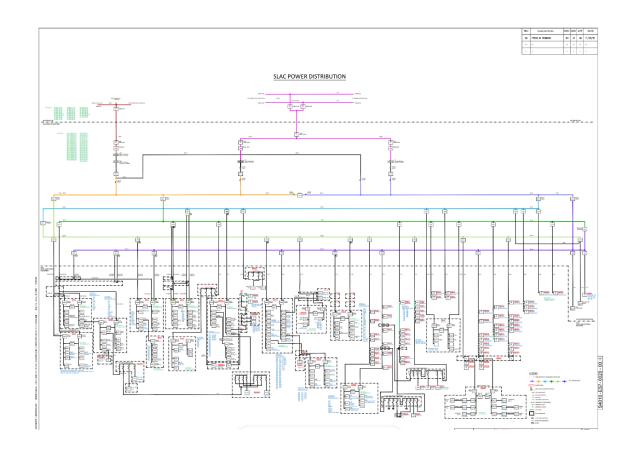


Preliminary Design Report and Specifications

This Preliminary Design Report along with the Concept Sketches and Performance Specifications are complementary to each other.

The Preliminary Design Report includes functional, programmatic, architectural, engineering, and background information for the Design-Build Subcontractor to submit a Final Design and Technical Proposal to carry the Project to completion.

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT


As-built Documents

As-Built Documents

The Design-Build Subcontractor shall:

- Verify and validate existing conditions prior to the start of construction
- Provided record drawings are to be considered diagrammatic in nature
- Identify any ambiguity in the drawings and work with SLAC SMEs to verify existing conditions
- Missing information that is needed to complete the design drawings shall be supplemented

Other construction projects will be concurrent at SLAC

